36 research outputs found

    Analysis and Design of RF Power and Data Link Using Amplitude Modulation of Class-E for a Novel Bone Conduction Implant

    Get PDF
    This paper presents analysis and design of a radio frequency power and data link for a novel Bone Conduction Implant (BCI) system. Patients with conductive and mixed hearing loss and single-sided deafness can be rehabilitated by bone-anchored hearing aids (BAHA). Whereas the conventional hearing aids transmit sound to the tympanic membrane via air conduction, the BAHA transmits sound via vibrations through the skull directly to the cochlea. It uses a titanium screw that penetrates the skin and needs life-long daily care; it may cause skin infection and redness. The BCI is developed as an alternative to the percutaneous BAHA since it leaves the skin intact. The BCI comprises an external audio processor with a transmitter coil and an implanted unit called the bridging bone conductor with a receiver coil. Using amplitude modulation of the Class-E power amplifier that drives the inductive link, the sound signal is transmitted to the implant through the intact skin. It was found that the BCI can generate enough output force level for candidate patients. Maximum power output of the BCI was designed to occur at 5-mm skin thickness and the variability was within 1.5 dB for 1–8-mm skin thickness variations

    Feedback Analysis in Percutaneous Bone-Conduction Device and Bone-Conduction Implant on a Dry Cranium

    Get PDF
    Hypothesis: The bone-conduction implant (BCI) can use a higher gain setting without having feedback problems compared with a percutaneous bone-conduction device (PBCD). Background: The conventional PBCD, today, is a common treatment for patients with conductive hearing loss and single-sided deafness. However, there are minor drawbacks reported related to the percutaneous implant and specifically poor high-frequency gain. The BCI system is designed as an alternative to the percutaneous system because it leaves the skin intact and is less prone to fall into feedback oscillations, thus allowing more high-frequency gain. Methods: Loop gains of the Baha Classic 300 and the BCI were measured in the frequency range of 100 to 10,000 Hz attached to a Skull simulator and a dry cranium. The Baha and the BCI positions were investigated. The devices were adjusted to full-on gain. Results: It was found that the gain headroom using the BCI was generally 0 to 10 dB better at higher frequencies than using the Baha for a given mechanical output. More specifically, if the mechanical output of the devices were normalized at the cochlear level the improvement in gain headroom with the BCI versus the Baha were in the range of 10 to 30 dB. Conclusion: Using a BCI, significantly higher gain setting can be used without feedback problems as compared with using a PBCD

    Faculty Members' Background Characteristics in Clinical Tutoring in Nursing Department: a Qualitative Study

    Get PDF
    Background: Nursing education is part of a higher education system dealing with the lives of human beings, and paying attention to it is of particular importance. This study was conducted to identify the faculty members' background characteristics in clinical tutoring in nursing department. Methods: The study was conducted using qualitative research approach. Data collection was performed using semi-structured interviews, extensive literature review and observation of the existing situation. Then, by specifying the various dimensions and items, the effective fundamental characteristics in clinical teaching of faculty members of the nursing department were determined. Results: The three important and effective fundamental characteristics features or classes relevant to the findings of the data analysis in this study are as follows: 1- Faculty member’s personal characteristics: Adherence to administrative, cultural and Islamic value - adherence to the principles of professional ethics - management ability - positive job and social attitude. 2- Faculty member's nursing professional characteristics: Having theoretical knowledge and practical skills. 3- Faculty member's tutorial characteristics: Observance of educational rules, ability to follow the principles of educational planning, ability to teach, ability to persuade and motivate students, ability to evaluate, research capabilities, teaching experience, professional ability and ability to develop professionally and scientifically. Conclusions: Paying attention to the instructor as the most effective factor in clinical education and recognition of the challenges associated with this factor is very important and effective for improving the quality of clinical education. In this regard, the use of a correct and effective evaluation system is very important. Therefore, determination of the effective fundamental characteristics in clinical teaching of faculty members of the nursing department is necessary to improve the quality of education and ultimately improve the efficiency and effectiveness of the educational system. Keywords: Clinical teaching, Faculty member features, Qualitative study, Clinical training

    Faculty Members' Background Characteristics in Clinical Tutoring in Nursing Department: a Qualitative Study

    Get PDF
    Background: Nursing education is part of a higher education system dealing with the lives of human beings, and paying attention to it is of particular importance. This study was conducted to identify the faculty members' background characteristics in clinical tutoring in nursing department. Methods: The study was conducted using qualitative research approach. Data collection was performed using semi-structured interviews, extensive literature review and observation of the existing situation. Then, by specifying the various dimensions and items, the effective fundamental characteristics in clinical teaching of faculty members of the nursing department were determined. Results: The three important and effective fundamental characteristics features or classes relevant to the findings of the data analysis in this study are as follows: 1- Faculty member’s personal characteristics: Adherence to administrative, cultural and Islamic value - adherence to the principles of professional ethics - management ability - positive job and social attitude. 2- Faculty member's nursing professional characteristics: Having theoretical knowledge and practical skills. 3- Faculty member's tutorial characteristics: Observance of educational rules, ability to follow the principles of educational planning, ability to teach, ability to persuade and motivate students, ability to evaluate, research capabilities, teaching experience, professional ability and ability to develop professionally and scientifically. Conclusions: Paying attention to the instructor as the most effective factor in clinical education and recognition of the challenges associated with this factor is very important and effective for improving the quality of clinical education. In this regard, the use of a correct and effective evaluation system is very important. Therefore, determination of the effective fundamental characteristics in clinical teaching of faculty members of the nursing department is necessary to improve the quality of education and ultimately improve the efficiency and effectiveness of the educational system. Keywords: Clinical teaching, Faculty member features, Qualitative study, Clinical training

    Imaginations of WALL-E : Reconstructing Experiences with an Imagination-Inspired Module for Advanced AI Systems

    Full text link
    In this paper, we introduce a novel Artificial Intelligence (AI) system inspired by the philosophical and psychoanalytical concept of imagination as a ``Re-construction of Experiences". Our AI system is equipped with an imagination-inspired module that bridges the gap between textual inputs and other modalities, enriching the derived information based on previously learned experiences. A unique feature of our system is its ability to formulate independent perceptions of inputs. This leads to unique interpretations of a concept that may differ from human interpretations but are equally valid, a phenomenon we term as ``Interpretable Misunderstanding". We employ large-scale models, specifically a Multimodal Large Language Model (MLLM), enabling our proposed system to extract meaningful information across modalities while primarily remaining unimodal. We evaluated our system against other large language models across multiple tasks, including emotion recognition and question-answering, using a zero-shot methodology to ensure an unbiased scenario that may happen by fine-tuning. Significantly, our system outperformed the best Large Language Models (LLM) on the MELD, IEMOCAP, and CoQA datasets, achieving Weighted F1 (WF1) scores of 46.74%, 25.23%, and Overall F1 (OF1) score of 17%, respectively, compared to 22.89%, 12.28%, and 7% from the well-performing LLM. The goal is to go beyond the statistical view of language processing and tie it to human concepts such as philosophy and psychoanalysis. This work represents a significant advancement in the development of imagination-inspired AI systems, opening new possibilities for AI to generate deep and interpretable information across modalities, thereby enhancing human-AI interaction.Comment: 18 pages

    The Bone Conduction Implant (BCI) - Preclinical Studies, Technical Design and a Clinical Evaluation

    No full text
    The Bone Conduction Implant (BCI) system has been developed as an alternative to the percutaneous bone anchored hearing aid (BAHA) with the advantage that the skin is kept intact. The transducer is permanently implanted and attached to the skull via a flat surface contact to the temporal bone. By applying amplitude modulation, the sound signal is transmitted to the implanted transducer through the intact skin via an efficient wireless inductive link. The external audio processor includes digital and analog signal processing units, and an Application Specific Integrated Circuit driving the inductive link. Its retention is provided by permanent magnets.Preclinical investigations of the BCI system have been performed on a skull simulator, a dry skull, cadaver heads and in an animal model study. In an extensive technical evaluation using a skull simulator, it was found that the power output from the BCI system was very robust for skin flap thicknesses from 2 to 8 mm with variability of less than 1.5 dB. Moreover, the peak of the maximum power output was 107 dB relative to 1 μN at transducer resonance frequency and at 5 mm skin flap thickness. This means that the highest output forces were produced in the "normal" skin thickness range, which in fact was one important design goal. The BCI system drains approximately 7.5 mA of battery current at 1 kHz and at 65 dB input sound pressure level, which corresponds to a battery lifetime of 5-7 days under normal use. It was found that significantly higher gain setting can be used without feedback problems for the BCI as compared to the BAHA. In an animal model (sheep), it was found that the implant-to-bone attachment became firmer over time and that the vibration transmission was stable over this period of eight months.Finally, in a clinical study, the results of the first patient were reported at one month follow up. The surgical procedure for installing the implant was found to be easy and safe, and the BCI gave a significant improvement in hearing over the unaided condition. The functional power output of the BCI was similar to most powerful ear level BAHA devices on headband at lower frequencies and superior at higher frequencies. In summary, it was found that the new BCI system can be an attractive alternative to the present percutaneous BAHA system

    A Novel Bone Conduction Implant System

    Get PDF
    Bone conduction is the process by which an acoustic signal vibrates the skull bones to stimulate the cochlea. Patients with pure conductive hearing loss, mixed hearing loss, and single sided deafness are sometimes poorly rehabilitated by conventional air conduction hearing aids due to for example the functionality losses in the middle ear. With these hearing impairments, the cochlea may function perfectly and a bone conduction hearing device can transmit the sound signal more efficiently to the cochlea. Today, the percutaneous bone anchored hearing aid (BAHA) is an important alternative for such individuals. This device uses a percutaneous snap coupling together with a bone anchored implant to transmit the sound vibrations to the skull bone and has proven to offer very good hearing rehabilitation. However, such a system with permanent skin penetration requires a life-long commitment of care every day, may cause skin infections, and there is a risk for implant damage due to trauma and hence improvements are called for in these aspects.A novel bone conduction implant (BCI) device is designed as an alternative to the percutaneous BAHA device, because it leaves the skin intact. The BCI device provides a specific hearing aid digital signal processor, and analog signal processing parts. By applying amplitude modulation technique, the sound signal is transmitted to a permanently implanted transducer via an inductive link system through the intact skin. An efficient wireless power and data transmission system for the BCI device has been designed and implemented. Maximum power output (MPO) of the BCI was designed to occur at 4 mm skin thickness. The power output variability for 1 to 8 mm skin thickness variations was within 1.5 dB. Maximum MPO was found to be 109 dB relative to 1 μN at transducer resonance frequency. This implant system consumes 14.6 mA of battery current at 1 kHz at 65 dB input sound pressure level. It was also found that the gain headroom improvement with the BCI versus the BAHA was in the range of 10-30 dB, if the mechanical output of the devices were normalized at the cochlear level

    A Novel Bone Conduction Implant System

    No full text
    Bone conduction is the process by which an acoustic signal vibrates the skull bones to stimulate the cochlea. Patients with pure conductive hearing loss, mixed hearing loss, and single sided deafness are sometimes poorly rehabilitated by conventional air conduction hearing aids due to for example the functionality losses in the middle ear. With these hearing impairments, the cochlea may function perfectly and a bone conduction hearing device can transmit the sound signal more efficiently to the cochlea. Today, the percutaneous bone anchored hearing aid (BAHA) is an important alternative for such individuals. This device uses a percutaneous snap coupling together with a bone anchored implant to transmit the sound vibrations to the skull bone and has proven to offer very good hearing rehabilitation. However, such a system with permanent skin penetration requires a life-long commitment of care every day, may cause skin infections, and there is a risk for implant damage due to trauma and hence improvements are called for in these aspects.A novel bone conduction implant (BCI) device is designed as an alternative to the percutaneous BAHA device, because it leaves the skin intact. The BCI device provides a specific hearing aid digital signal processor, and analog signal processing parts. By applying amplitude modulation technique, the sound signal is transmitted to a permanently implanted transducer via an inductive link system through the intact skin. An efficient wireless power and data transmission system for the BCI device has been designed and implemented. Maximum power output (MPO) of the BCI was designed to occur at 4 mm skin thickness. The power output variability for 1 to 8 mm skin thickness variations was within 1.5 dB. Maximum MPO was found to be 109 dB relative to 1 μN at transducer resonance frequency. This implant system consumes 14.6 mA of battery current at 1 kHz at 65 dB input sound pressure level. It was also found that the gain headroom improvement with the BCI versus the BAHA was in the range of 10-30 dB, if the mechanical output of the devices were normalized at the cochlear level

    The Bone Conduction Implant (BCI) - Preclinical Studies, Technical Design and a Clinical Evaluation

    Get PDF
    The Bone Conduction Implant (BCI) system has been developed as an alternative to the percutaneous bone anchored hearing aid (BAHA) with the advantage that the skin is kept intact. The transducer is permanently implanted and attached to the skull via a flat surface contact to the temporal bone. By applying amplitude modulation, the sound signal is transmitted to the implanted transducer through the intact skin via an efficient wireless inductive link. The external audio processor includes digital and analog signal processing units, and an Application Specific Integrated Circuit driving the inductive link. Its retention is provided by permanent magnets.Preclinical investigations of the BCI system have been performed on a skull simulator, a dry skull, cadaver heads and in an animal model study. In an extensive technical evaluation using a skull simulator, it was found that the power output from the BCI system was very robust for skin flap thicknesses from 2 to 8 mm with variability of less than 1.5 dB. Moreover, the peak of the maximum power output was 107 dB relative to 1 μN at transducer resonance frequency and at 5 mm skin flap thickness. This means that the highest output forces were produced in the "normal" skin thickness range, which in fact was one important design goal. The BCI system drains approximately 7.5 mA of battery current at 1 kHz and at 65 dB input sound pressure level, which corresponds to a battery lifetime of 5-7 days under normal use. It was found that significantly higher gain setting can be used without feedback problems for the BCI as compared to the BAHA. In an animal model (sheep), it was found that the implant-to-bone attachment became firmer over time and that the vibration transmission was stable over this period of eight months.Finally, in a clinical study, the results of the first patient were reported at one month follow up. The surgical procedure for installing the implant was found to be easy and safe, and the BCI gave a significant improvement in hearing over the unaided condition. The functional power output of the BCI was similar to most powerful ear level BAHA devices on headband at lower frequencies and superior at higher frequencies. In summary, it was found that the new BCI system can be an attractive alternative to the present percutaneous BAHA system

    A Novel Bone Conduction Implant - Analog Radio Frequency Data and Power Link Design

    No full text
    Patients who are suffering from conductive hearing loss and single sided deafness cannot sometimes be rehabilitated by conventional air conduction hearing aids. Today, percutaneous Bone Anchored Hearing Aid (BAHA) is an important alternative for such patients. BAHA uses a titanium implant which penetrates the skin and can cause skin infection, skin redness and requires life-long commitment of care every day. A novel Bone Conduction Implant (BCI) is designed as an alternative to the percutaneous BAHA, because it leaves the skin intact. It comprises an external audio processor and an implanted unit called the BCI Bone Bridge. Sound is transmitted to the implant via an inductive radio frequency (RF) link through the intact skin using amplitude modulation. This paper presents an analog RF data and power link design as a first implementation for the BCI. The RF link is designed to operate in critical coupling to transmit maximum power to the implant. Maximum Power Output of the BCI was measured at 2 mm skin thickness and was found to be 105 dB relative to 1 \ub5N at the transducer resonance frequency. This output force is fairly robust in 2 mm to 6 mm skin thickness range
    corecore